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Exact formulas for the K functional of some quasi-Banach couples of the type
(X, L�) are obtained. In particular we can cover the cases when X=Lp, q (Lorentz
spaces), 0<p<�, 1�q��, and X=M. (Marcinkiewicz spaces). We also
describe the K functional of the pair (Lp�q, 1 , Lp, q), 1<q�p<�. This generalizes
the Nilsson�Peetre description of K(t, f, L1 , Lq), see [11]. An optimal slicing
technique gives an exact description of the E functional of the pair (Lp�q , Lp, q).
� 1997 Academic Press

1. INTRODUCTION

The K functional plays a fundamental role in the theory of interpolation.
There are only a few cases where exact formulas are known, e.g. for the
couple (L1 , L�) we have the (Peetre) formula

K(t, f, L1 , L�)=|
t

0
f *(s) ds. (1)

On the other hand, there are several well-known approximative formulas,
see e.g. the bibliography by Maligranda [9]. However, it is of great interest
to find exact descriptions. In this paper we present some formulas of this
type.

Another reason for the importance of the K functional is its close
connection to the E functional, which has applications to approximation
theory. At the end of this paper we present an example how one can
determine the E functional when the optimal decomposition for the
corresponding K functional is known.

The K functional for the pair (X0 , X1) of quasi-normed spaces, both
linearly embedded in a vector space X, is defined for all f # X0+X1 and
t>0 as

K(t, f, X0 , X1) :=inf[&g&X0
+t &h&X1

| f =g+h, g # X0 and h # X1].
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As infimum over affine mappings the function K( } , f, X0 , X1) is concave.
The E functional for the pair (X0 , X1) of quasi normed spaces, both linearly
embedded in a vector space X, is defined for all f # X0+X1 and t>0 as

E(t, f, X0 , X1) :=inf[& f& g&X0
| f &g # X0 , g # X1 and &g&X1

�t],

where, as usual, inf , is defined as +�. It is well known that E( } , f, X0 , X1)
is a decreasing proper convex function when Xi are normed spaces. In the
normed space case we redefine, if necessary, it at the point where it jumps
to infinity so it will be lower semicontinuous there and hence everywhere.

For a function f : (0, �) � [0, �] we define, for all positive t,

fv(t) := inf
s>0

[ f (s)+st] (2)

and

f%(t) :=sup
s>0

[ f (s)&st]. (3)

These transformations are similar to the Legendre transform. We note that
in the same manner as in the Legendre transform case, one sees that
fv%=: f 6 is the greatest lower semicontinuous decreasing convex minorant
of f and that f%v=: f 7 is the least concave majorant of f. The following
relations between the K and E functionals hold, (see [3, 13]):

K( } , f, X0 , X1)=E( } , f, X0 , X1)v (4)

and

E( } , f, X0 , X1)7=K( } , f, X0 , X1)%. (5)

Note that E( } , f, X0 , X1)=E( } , f, X0 , X1) 6 in the case when Xi are normed
spaces.

Unless something else is explicitly said we are working on a _-finite
measure space (0, 7, +). Throughout a primed exponent denotes the
conjugate exponent.

The paper is organized as follows. We begin by determining the K func-
tional for the pair (Lp, q , L�), 0<p<� and 1<q<� (see Theorem 2).
This is done by actually finding the optimal level for the horizontal slicing.
We know that the best decomposition is a horizontal slicing since the pair
is a function lattice together with L� . We proceed by proving an exact
formula of the K functional for the pair (X, L�), (see Theorem 3) where X
is a quasi-normed function lattice satisfying an additional property. This
property can be verified in many cases (see e.g. Corollaries 4 and 5). In
particular we obtain an exact formula for (weak-Lp , L�).
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In the last section we study the pair (Lp�q, 1 , Lp, q), 1<q�p<�. As a
special case, when p=q, we get the Nilsson�Peetre description of the K
functional for the pair (L1 , Lq). The proof presented here is different from
the one in [11]. In some cases, when one knows the optimal decomposi-
tion for the K functional, the E functional can be determined by using the
Legendre type transform that describes the relationship between the E and
K functionals. We finish this paper by demonstrate this technique for the
couple (Lp�q, 1 , Lp, q), thereby obtaining the previously announced exact
description of E(t, f, Lp�q, 1 , Lp, q).

2. EXACT FORMULAS FOR SOME K FUNCTIONALS OF
THE TYPE K( } , } , X, L�)

We start by pointing out a lemma of independent interest. This result
appears in [4, 12] in the case X=L1 . The proof in the general case when
X is a quasi-normed function lattice is similar but we present the details
for the readers convenience. This lemma will be used to determine the K
functional for some pairs of the type (X, L�).

Lemma 1. Let X be a quasi normed function lattice. Then, for f # X+L� ,

K(t, f, X, L�)=inf[&( | f |&*)+ &X+t* | *�0, ( | f |&*)+ # X ]. (6)

Proof. Consider an arbitrary decomposition f =f0+ f1 with f0 # X and
f1 # L� . Let

g :=| f |&min[& f1&� , | f |]=(| f |&& f1&�)+.

It follows that g�| f0 | a.e. and, thus, g # X and

& f0&X+t & f1 &��&g&X+t & f1 &� .

Hence

K(t, f, X, L�)�inf[&( | f |&*)+ &X+t* | *�0, ( | f |&*)+ # X ].

In order to prove the inequality in the reversed direction we take *�0
with ( | f |&*)+ # X arbitrarily. Define f1 :=h min[ | f |, *], where h(x)=0 if
f (x)=0 and h(x)= f (x)�| f (x)| otherwise. Let f0 :=f &f1 . This gives
f0=h( | f |&*)+ and, hence, f0 # X. Since & f1&��* we have

K(t, f, X, L�)�inf[&( | f |&*)+ &X+t* | *�0, ( | f |&*)+ # X ].

This completes the proof. K
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If we define & f &X as +� when f is not an element of X, then (6) can
be written as

K(t, f, X, L�)= inf
*>0

[&( | f |&*)+ &X+*t].

It is in this form it will be used in the sequel. We also note that Lemma 1
follows by using the well-known formula E(t, f, X, L�)=&( | f |&*)+&X ,
see [10], and the transform (4).

The Lorentz space Lp, q , 0<p<�, 0<q<�, is defined as the set of all
real or complex valued measurable functions f such that

& f &p, q :=\|
�

0
[s1�pf *(s)]q ds

s +
1�q

<�,

where f * denotes the rearrangement of f defined via

df (*) :=+[x # 0 | | f (x)|>*], *�0,

f *(t) :=inf[*�0 | df (*)�t], t�0.

The space Lp, q will be a quasi-Banach function lattice with & }&p, q as a
quasi-norm.

For 0<p<�, 1<q<� we let f denote an arbitrary function in
Lp, q+L� and define

T(*) :=
&( | f |&*)+ &p�q$, q&1

&( | f |&*)+&p, q
, (7)

for * # (*
�
, & f &�) where

*
�

:=inf[*�0 | &( | f |&*)+&p, q<�].

We note the following facts:

(a) *
�
<�. This fact follows since f # Lp, q+L� and the infimum is

taken over a nonempty set.

(b) The function T is well defined. To see this we have to conclude
that the numerator is finite. If A: :=[x>0 | f *(x)>:] for :>*

�
, then

&(A:)<�, where d&=x(q�p)&1 dx. Indeed, take an arbitrary $ # (*
�
, :), and

we find that

�>&( | f |&$)+&q
p, q�|

A:

sq�p( f *(s)&$)q ds
s

�(:&$)q &(A:).
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This implies that

&( | f |&:)+&q&1
p�q$, q&1=|

�

0
sq�p( f *(s)&:)q&1

+

ds
s

<�.

(c) The interval (*
�
, & f &�) may be empty. T is obviously a continuous

function, so the range of T is an interval.

The optimal level of the horizontal slicing in the following theorem is
exactly what we get by putting the formal derivative equal to zero and
solve for the level of slicing.

Theorem 2. Let 0<p<�, 1<q<� and f # Lp, q+L� . If *
�
<& f &� ,

then

K(t, f, Lp, q , L�)

&( | f |&*
�
)+&p, q+t*

�
, t1�(q&1)>T(*) for all * # (*

�
, & f &�)

={&( | f |&*)+ &p, q+t*, t1�(q&1)=T(*)

t & f &� , t1�(q&1)<T(*) for all * # (*
�
, & f &�).

In the remaining case, when *
�
=& f &� , we have K(t, f, Lp, q , L�)=t & f &� .

Proof. Let F(!) :=&( | f |&!)+&p, q+t!. According to Lemma 1 we know
that the K functional for the pair (Lp, q , L�) is equal to inf[F(!) | !�0].
Furthermore, it is clear that it suffices to take the infimum over F(!) where
! # [*

�
, & f &�].

Assume that *
�
<& f &� . Choose ! # [*

�
, & f &�] arbitrarily and let

t1�(q&1)=T(*), d :=max[*, !] and A: :=[x>0 | f *(x)>:]. We have

[F(!)&F(*)] &( | f |&*)+ &q&1
p, q

=(!&*) &( | f |&*)+&q&1
p�q$, q&1&&( | f |&*)+&q

p, q

+&( | f |&!)+ &p, q &( | f |&*)+&q&1
p, q .

By applying the Ho� lder inequality on the last term in the right hand side
we find that

[F(!)&F(*)] &( | f |&*)+ &q&1
p, q

�(!&*) &( | f |&*)+&q&1
p�q$, q&1&&( | f |&*)+&q

p, q

+|
A$

sq�p( f *(s)&!)( f *(s)&*)q&1 ds
s

.
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Therefore, since the integrals over A$ on the right hand side vanishes,

[F(!)&F(*)] &( | f |&*)+&q&1
p, q

�(!&*) |
A*"A$

sq�p( f *(s)&*)q&1 ds
s

&|
A*"A$

sq�p( f *(s)&*)q ds
s

�(!&*) |
A*"A$

sq�p( f *(s)&*)q&1 ds
s

&($&*) |
A*"A$

sq�p( f *(s)&*)q&1 ds
s

=0.

We conclude that F(!) attains minimum at !=*.
If t1�(q&1)>T(*) for all * # (*

�
, & f &�) it follows that F is strictly increasing

on (*
�
, & f &�). Indeed, let $<! and use the Ho� lder inequality to find that

[F(!)&F($)] &( | f |&$)+ &q&1
p, q

=&( | f |&$)+ &q&1
p, q ((!&$) t+&( | f |&!)+&p, q&&( | f |&$)+&p, q)

>&( | f |&$)+ &q&1
p, q ((!&$) T($)q&1+&( | f |&!)+&p, q&&( | f |&$)+&p, q)

�|
A$

sq�p( f *(s)&$)q&1 [!&$+ f *(s)&!& f *(s)+$]
ds
s

=0.

Hence

K(t, f, Lp, q , L�)=lim
! a *

�

F(!)=&( | f |&*
�
)+&p, q+t*

�
.

In a similar way we find that if t1�(q&1)<T(*) for all * # (*
�
, & f &�), then

F is strictly decreasing on (*
�
, & f &�). If ! A & f &� , then F(!) a t & f &� . Hence

K(t, f, Lp, q , L�)=t & f &� .

The remaining case, i.e. when *
�
=& f &� , is trivial. K

Remark 1. Theorem 2 can immediately be generalised to the case where
Lp, q is substituted by the more general space L., q . The space L., q is
defined as the set of real or complex valued + measurable functions f such
that

& f &., q :=\|
�

0
[ f *(s) .(s)]q ds

s +
1�q

<�,
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where . is quasi concave. In this case the function T will be

T(*) :=
&( | f |&*)+ &.q$, q&1

&( | f |&*)+ &., q
.

Next we state the following generalization of the Peetre formula (1):

Theorem 3. Let X be a quasi normed function lattice and let f be a fixed
function in X+L� . Assume that X has the following property: There exists
a function Bf such that

&( | f |&*)+ &X=sup
$>0

[Bf ($)&$*], (8)

holds for all *>0. Then

K( } , f, X, L�)=B 7
f , (9)

where B 7
f denotes the least concave majorant of Bf . Conversely, for (9) to

holds at t it is necessary that X satisfies (8) for *=t.

Remark 2. & f &X is assumed to be +� when f � X. For the last part
of the theorem the function x [ &( | f |&x)+&X is assumed to be lower
semicontinuous. Since it is convex the only possibility for non lower semi-
continuity is at the point where it jumps to infinity, if necessary we redefine
it there. This will not be necessary if X has the Fatou property, i.e. if
0� fn A f +-a.e. O & fn &X A & f &X .

Proof. According to Lemma 1 and the properties of the transforms defined
by (4) and (5) it yields that

K(t, f, X, L�)= inf
*>0

[&( | f |&*)+ &X+*t]

= inf
*>0

[sup
$>0

[Bf ($)&$*]+*t]=Bf%v(t)=B7
f (t).

Conversely, take the transform g [ g% on

inf
*>0

[&( | f |&*)+&X+*t]= inf
*>0

[sup
$>0

[Bf ($)&$*]+*t]

and observe that x [ &( | f |&x)+&X is convex and lower semicontinuous.
K

When we say that a space X has the property (8) we mean that (8) is
satisfied for all f in X+L� . By using Theorem 3 in concrete cases we
obtain as special cases both well-known and new exact formulas for the K
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functional. In particular, we believe that the formulas in the following two
corollaries are new.

Corollary 4. Let 0<p<� and f # Lp, �+L� . Then

K(t, f, Lp, � , L�)=(tf *(t p)) 7 . (10)

Proof. We observe that Lp, � has the property (8) with Bf (t)=tf *(t p).
Indeed, it yields that

&( | f |&*)+&p, � =sup
$>0

[$1�p( | f ($)|&*)*+]

=sup
$>0

[$1�p( f *($)&*)]

=sup
$>0

[$f *($ p)&$*].

This completes the proof. K

Remark 3. For the case p=1, (10) appears without proof in [5]. For
p{1 the following equivalence formula

K(t, f, Lp, � , L�)tsup
s�t p

s1�pf *(s)

is known. This is a special case of the Holmstedt formula, see [5].
Moreover, one easily sees that, for all t>0,

sup
s�tp

s1�pf *(s)�(tf *(t p))7�2 sup
s�t p

s1�pf *(s).

Next we consider the Marcinkiewicz space M. . Let . be a quasi-concave
function on R+ :=(0, �), i.e. a positive increasing function such that
.(t)�t is decreasing. The space M. consists of all real or complex valued
+-measurable functions f defined on 0 for which

& f &M. :=sup
t>0 {

.(t)
t |

t

0
f *(s) ds=

is finite. With & }&M. as norm M. is a Banach function lattice.

Corollary 5. Let . be a quasi concave bijection on R+. For t>0 and
f # M.+L� we have

K(t, f, M. , L�)=\ t
.&1(t) |

.&1(t)

0
f *(s) ds+

7

.
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Proof. Since .(t) tends to zero as t a 0 it yields that

&( | f |&*)+ &M. =sup
$>0 {

.($)
$ |

$

0
( f (s)&*)*+ ds=

=sup
$>0 {

.($)
$ |

$

0
f *(s) ds&.($) *=

=sup
$>0 {

$
.&1($) |

.&1($)

0
f *(s) ds&$*= .

Therefore the property (8) holds with

Bf (t)=
t

.&1(t) |
.&1(t)

0
f *(s) ds,

and the proof is complete. K

As a special case we get the (Peetre) formula (1). We just choose . as
the identity function and observe that t [ �t

0 f *(s) ds is concave.
There are many more examples of spaces that satisfy (8), e.g. Lp, 1 . We

only need to observe that & f &p, 1=sup$ �$
0 s1�pf *(s)(ds�s) and the formula

K(t, f, Lp, 1 , L�)=|
(t�p)p

0
s1�pf *(s)

ds
s

follows if p�1 and if p<1 the formula is correct if we take the operator
on the right hand side. Another way of arriving at this formula, when p�1,
is by using the well-known formula, see [7, 14]:

K(t, f, 4. , 4�)=|
�

0
f * d min(., t�).

Note that Lp, 1 #4. with .(t)= pt1�p and L� #4� with �=/(0, �) , where
/ denotes the characteristic function.

Yet another example of a space that satisfies (8) is L1+L� . This is a
Marcinkiewicz space. We have L1+L� #Mmin(1, } ) , but since min(1, } ) is
not a bijection Corollary 5 is not applicable. To verify that Mmin(1, } ) has
the property (8) we discuss as in the proof of Corollary 5 and use the
following equality

sup
$>0 {

min(1, $)
$ |

$

0
f *(s) ds&min(1, $) *==sup

$>0 {|
min(1, $)

0
f *(s) ds&$*= .
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One obtains the well-known formula, see [8],

K(t, f, L1+L� , L�)=|
min(1, t)

0
f *(s) ds.

We end this section by giving just one example of the fact that this
technique also can give equivalence formulas for the K functional.
Maligranda showed in [8], that if X is a rearrangement invariant space on
the semiaxis (0, �) and .(t) :=&/(0, t)&X , then K(.(t), f, X, L�(0, �))
is equivalent to & f*/(0, t)&X . This can also be seen (in the spirit of
Theorem 3) in the following way:

K(.(t), f, X, L�(0, �))= inf
*>0

[&( f *&*)+&X+*.(t)]

� inf
*>0

[sup
$>0

[&( f*&*)+ /(0, $)&X+*.(t)]]

� inf
*>0

sup
$>0

[& f*/(0, $)&X&*.($)+*.(t)]

� inf
*>0

[& f */(0, t) &X&*.(t)+*.(t)]

=& f */(0, t) &X .

To prove K(.(t), f, X, L�(0, �))�2 & f*/(0, t) &X we use the fact that the
sum of rearrangement invariant spaces is rearrangement invariant, see e.g.
[6]. Hence

K(.(t), f, X, L�(0, �))=K(.(t), f *, X, L�(0, �))

�& f*/(0, t) &X+.(t) & f*/[t, �) &�

=& f */(0, t)&X+&/(0, t) &X f *(t)

�2 & f */(0, t)&X ,

and we have proved that K(.(t), f, X, L�(0, �))r& f */(0, t) &X with
equivalence constants 1 and 2.

3. DESCRIPTIONS OF THE K AND E FUNCTIONALS FOR
THE PAIR (Lp�q, 1 , Lp, q)

We describe the K functional for the pair (Lp�q, 1 , Lp, q), 1<q�p<�.
This is a generalization of the description of K(t, f, L1 , Lq) by Nilsson and
Peetre in [11], see also [1]. The proof here is somewhat different from the
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ones in [11] and [1]. By using this result, we can also obtain an exact
description of the E functional E(t, f, Lp�q, 1 , Lp, q).

For f # Lp�q, 1+Lp, q , 1<q�p<� we define, for *>0,

G(*) :=
p
q

(df (*))q�p+|
�

df (*)
(s1�pf *(s))q�*q ds

s
.

Theorem 6. For t>0 and f # Lp�q, 1+Lp, q , 1<q�p<�,

K(t, f, Lp�q, 1 , Lp, q)

={|
df (*)

0
sq�pf *(s)

ds
s

+|
�

df (*)
(s1�pf *(s))q�*q&1 ds

s
,

& f &p�q, 1 ,

tq$=G(*)

tq$�
p
q

(df (0))q�p

.

Moreover, the optimal decomposition is given by a horizontal slicing.

Remark 4. The properties of G implies that the above description covers
all cases.

Proof. The function G is decreasing and continuous. Furthermore
G(*) � 0 as * tends to infinity and G(*) � p�q(df (0))q�p as * tends to zero.
Hence the equation tq$=G(*) can be solved when tq$<( p�q)(df (0))q�p. Let
* satisfy tq$=G(*). Then, we have

K(t, f, Lp�q, 1 , Lp, q)�&( | f |&*)+&p�q, 1+t &min( | f |, *)&p, q

=|
df(*)

0
sq�pf *(s)

ds
s

+|
�

df (*)
(s1�pf *(s))q�*q&1 ds

s

=|
�

0
f *(s) g(s) ds,

where

g(s) :={s(q�p)&1,
s(q�p)&1f *(s)q&1�*q&1,

s<df (*)
s�df (*).

Choose an arbitrary decomposition f =f0+ f1 with f0 # Lp�q, 1 and f1 # Lp, q .
Use the Hardy lemma, see e.g. [2] p. 56, and we see that

|
�

0
f *(s) g(s) ds�|

�

0
f 0*(s) g(s) ds+|

�

0
f 1*(s) g(s) ds.
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Apply the Ho� lder inequality to find that

|
�

0
f *(s) g(s) ds�& f0 &p�q, 1+t & f1&p, q .

Take infimum over all decompositions and the formula

K(t, f, Lp�q, 1 , Lp, q)=|
df (*)

0
sq�pf *(s)

ds
s

+|
�

df (*)
(s1�pf *(s))q�*q&1 ds

s

follows.
Let now tq$�( p�q)(df (0))q�p. In particular this implies that f # Lp�q, 1 and,

hence, K(t, f, Lp�q, 1 , Lp, q)�& f &p�q, 1 . When tq$ tends to ( p�q)(df (0))q�p we
see that * tends to zero. But

lim
* � 0\|

df (*)

0
sq�p f *(s)

ds
s

+|
�

df (*)
(s1�pf *(s))q�*q&1 ds

s +=& f &p�q, 1 ,

and we conclude that K(t, f, Lp�q, 1 , Lp, q)=& f &p�q, 1 . We note that in both
cases the optimal decomposition is a horizontal slicing and the proof is
complete. K

In order to determine E(t, f, Lp�q, 1 , Lp, q) one could try to apply formula
(5) but this is not at all easy. Instead one should try to write the K
functional as a transform like (4) and then using the transform (5).

Theorem 7. Let t>0 and f # Lp�q, 1+Lp, q , 1<q�p<�. We have

E(t, f, Lp�q, 1 , Lp, q)=(&( | f |&$(t))+&p�q, 1) 6 ,

where

$(t) :={g&1(t),
& f &� ,

t<& f &p, q

t�& f &p, q ,

with g(t) :=&min( | f |, t)&p, q .

Proof. From the previous theorem we know that

K(t, f, Lp�q, 1 , Lp, q)= inf
*�0

[&( | f |&*)+&p�q, 1+t &min( | f |, *)&p, q].

Obviously g is a continuous bijection from (0, & f &�) to (0, & f &p, q). Hence

K(t, f, Lp�q, 1 , Lp, q)= inf
*>0

[&( | f |&$(*))+&p�q, 1+t*]

=(&( | f |&$(t))+&p�q, 1)v.
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In view of (5) it follows

E(t, f, Lp�q, 1 , Lp, q)=(&( | f |&$(t))+&p�q, 1)6 .

This completes the proof. K

Remark 5. The technique presented in the proof of Theorem 7 can be
used in several different cases when one knows the decomposition that
obtains the infimum in the definition of the K functional, e.g. for the pairs
(L|0

1 , L|1
1 ) and (4. , 4�).
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